Steve Chenoweth

Statement of Teaching Philosophy

For my Tenure Review, 2008-9

How many ways are there to address one’s personal teaching philosophy? I’d love to cover the territory. Most of all I have the urge to speak from my own values, about what students derive when I am teaching them. I think the PTR committee would find my impetus on this to be familiar. I share your desire to see the doors open in students’ minds as we engage them in learning. Knowing that this will benefit them directly and long-term is what it’s all about.

I begin by talking about my ideas on teaching which pertain specifically to software engineering and applied computer science. I then move toward how I believe this philosophy has worked for me so far at Rose.

Ideas which pertain…

I hope I share with you the urgency to change how we teach engineering to meet the needs of a world marketplace. As Tom Friedman
 stresses, work in the US must growingly become right-brain – collaborative, inventive, and synthetic in addition to analytical. As teachers, we need to be role models of people who can help our students be successful in this changing and intensely competitive environment.

Software engineering is inherently about imprecise and non-scientifically founded skills – heuristics and best practices. I believe these are best learned in a classroom using non-pedagogical teaching methods. This is not yet a fully shared approach for teaching computer science, but it is increasingly common in industry, including for teaching software engineering. It surely applies to most of the CS courses we teach at Rose, which have an applied side in addition to their theoretical content. We see non-pedagogical methods also in business schools and medical schools, where softer subjects are nonetheless highly valued. These schools seem to have preceded us in pressing for effective methods of learning beyond pedagogy. Yet a significant amount of the student experience we provide at Rose already is of this type – for example, classes using problem-based learning, studio style labs, and some of our Angel-based activities like community groups. In this paper I have skipped over justifying why anything but pedagogy would be useful – I hope that is clear from your own experience – say, the teaching of topics with less underlying science in your own realms.

The question of how to teach those soft areas…

Good design work tends to be done “in the flow,” where attention to detail is subsumed by a knowledgeable sense of the big picture – the whole system to be created. Thus, the studies of people like Csikszentmihalyi
 apply, regarding the personal approach to be used by an instructor, and to be acquired by students, for success in creative work. Experiential learning is required. Overlearning is important. Visual messages trump textual messages. Trial and error is needed. Group diversity of thought is a plus.

An example of a well thought-out teaching methodology with applicability to softer aspects of software engineering is Knowles’ Andragogy
. This pedagogy replacement was designed for adult education; it includes experiential learning, general purpose problem solving, allowance for divergent thinking, and the creation of situations analogous to problem-based learning to inspire motivation. For software engineering, Andragogy mimics many of the conditions under which developers must progress in their projects, and this fact makes it a reasonable starting model for the softer aspects of software engineering curricula. (Using Sullivan’s form-follows-function as a rationale.) A similar methodology is Shneiderman’s Engagement Theory
. Again, it’s designed for another style of education – this time, distance learning – but many pieces of it are applicable.

The “front end” of software engineering, where I have spent much of my career, is quite likely the softest in terms of required methodologies to do the work, and, to me, also in terms of how it can be taught successfully. Here are examples of some of the teaching heuristics which have worked for me in this area. I utilize these purposefully, enthusiastically and reflectively in teaching subjects like requirements engineering and systems architecture. The practices are non-trivial changes, and the results are not the same as if one sticks to more traditional pedagogy:

1. Finality – There is no single right answer. Successful solutions may in fact look much different. Classic evaluative concepts such as “correctness” and “clarity” need to be seen in a different light. Even measurable customer values can be conflicting – Say, their need for system robustness versus their need for system capacity. Sometimes enthusiasm is the guide for what to pursue – it uncovers a large agenda.

Intentionally revisiting apparently flawed beginnings and wrestling with these all over again has a very interesting impact on students. It especially recommends the value of engaging actively in fuzzy initial understandings; not becoming impatient for precision to arrive deus ex machina when that can only be forced.

2. Critical thinking, if restricted to mean rational thinking, is helpful only at certain times, not at all times. One has to be able to turn it off, really off, as in not verbalizing anything and letting random images float in. To pick a setting, during group brainstorming, this is the only path to a rich base of ideas for later analysis. Another setting -- In the very early stages of a project, crazy solutions are pursued recklessly with as much energy as alternative, cautious ones are pursued carefully; this is the best process for avoiding the large cost of missed opportunities. The philosophical model I use in class is alternating in a clearly defined way between divergent and convergent approaches.

Some students find their first opening up to divergent thinking, turning off their self-censor, to be a personal or career-defining event. For others, it is simply another good tool in their toolbox.

3. Solution “flow” – Similarly, logical and linear thinking is appropriate at certain times, not at all times. A honed skill required in systems architecture is “stepping back” to see one’s attempted solution from a different view. This is inherently non-linear and illogical. It doesn’t flow from your train of thought, on purpose, and you can’t have anticipated the consequences of doing this trick on yourself. Professors need to demonstrate this skill continually in software engineering classes, not just discuss doing it. They need to demonstrate appropriate designer flightiness.

From this, students learn to expect that the answers to design questions will quite naturally disagree unexpectedly from different points of view, even within a single person like themselves.

4. Can it be staged? The essence of the encounter with really hard problems cannot be faked in class, using problems where the professors really know all the answers and only act as if they are working through them. In my view, that’s a simple mistake emanating primarily from the wish not to abandon the pedagogical position. Our confusion has to be real.
 This means we have to be willing to stand up in front of a class and address topics for which we have no comfort level at all, for which we don’t have more technical expertise than the students, only more general experience. This is the situation in which systems architects find themselves at the start of novel projects, and we want to model their behavior so that the students will model ours.

I included this point especially because it goes against the very fabric of what we usually would call proficient teaching. We spend a lot of summers going down the exact opposite path from this, reducing the risk in classes we are about to teach, and this is expected. And, I believe frankly many teachers would find it difficult to stand up before a class intentionally unprepared, in order to share in the existential act of “project start up.”
Like every other process, our classic path to excellence in teaching works better for some situations than for others. Teaching students to deal with risk on your feet, when hardened tools aren’t available for that, may be a place where detailed lesson planning and anticipation of all questions and contingencies is the worst kind of preparation.

There is a lesson in this about intellectual honesty, even at the cost of losing face, which people often learn very quickly.

5. Teamwork – Group interaction is inherent to outcomes, versus being a desirable class add-on given lower emphasis than individual performance. It’s a symphony – Students must learn to rely on one another as the members of software development teams. No one person will know everything needed to complete a project. The teamwork must be sincere. Large software engineering projects are mostly too complex for any one person to dictate the answers.

This teamwork requirement for success may be hardest on students accustomed to gaining recognition by being fastest with the right answer. Like everyone else, they need to learn to value their peers in school, however, or they remain non-empathetic team members in industry.

6. What counts – Some of the work done in class will not succeed. Negative outcomes are valued as well as positive outcomes when the risk was unavoidable (or taken on intentionally). On the front end, things are worked to be thrown out.

The experience of expending resources on multiple paths, and wrestling realistically with where the payoff bounds are to strategy, is a key to students’ success in front-end work.

How do students react to these methods in industry?

Before coming to Rose, I wrote the following about my experiences implementing this teaching philosophy:

Students react differently to any unexpected approach. In the first class they take which is taught using these non-traditional values and principles, their reactions will be diverse. In classes I’ve taught for Lucent business units, four students with similar backgrounds could react as follows – one saying this just makes good business sense for project startups, one claiming to have had their first serious flash of business enlightenment, one not wanting to engage at all because it’s so different from routine class experience, and one saying this is what they had been dying for all along – a class which wrestled with project issues realistically. Student reactions also will differ because of the greater reliance on their teams and on their necessarily becoming progressively more self-directed.

In longer classes and in follow-up classes using the same teaching methods, the student reactions become more consistent. Thus, if such non-pedagogical learning heuristics are introduced systematically in the curriculum, students will take to them very well when they get to learning about very uncertain aspects of software engineering, such as front-end work.

The most significant difference from standard pedagogy seen by class observers is the level of energy and engagement in the room. Since this active thirst is a core requirement for success in project start-ups, that particular attribute of these teaching methods has face validity.

How have our students reacted to these methods at Rose?

The teaching evaluations you see in this folder describe student feedback during week 10 of each course, and my reactions and plans based on this feedback, not long after. Here, in contrast, I take a longer perspective on my first three years.

My personal style may be more amenable to students who feel closer to getting a job and are farther down the road on Perry’s epistemological maturity scale, like upper-classmen. These are in fact the students I primarily teach at Rose.
How have things gone, on reflection, in the upper division courses I’ve taught at Rose?

I proposed in the above statements I made before coming to Rose, that students had to get used to my style and so they probably would do better and like it better in second and third courses taught using my style and philosophy.

I think we see this happening in the student feedback for my courses, although its anonymous feature makes it difficult to track the repeaters versus those I’ve not had before.

In the SE courses we all have focused on industry-like learning, in which problems and solutions are both more fuzzy than they are in traditional CS classes. In the junior-level SE curriculum one sees the effects of that, with students who have been taking mostly CS, science and math courses. In the first of the SE courses students take (CSSE 371, Requirements Engineering), they give very mixed (and less favorable) feedback, regardless of who teaches it. Thereafter, they appear to have come to grips with being nudged toward a career fogged with cloudy technical choices.

As my students have gotten more accustomed to the nature of these courses and to my own teaching, I’ve been able to include many additional less-structured elements in my classes. For example, in the second offering of Software Architecture and Design I, instead of a provided class project, groups of students invented projects to give to other groups of students, which were in turn developed by third groups of students, all providing feedback to one another on what went well and what didn’t in this process.

There are still no guarantees that everyone will like greater freedom in learning. Most of the students in the class just described noted on their course feedback how much they liked doing this self-reliant teaming process, but one student definitely did not. As another example – in my third time teaching the Intro to Artificial Intelligence class, I allowed students to create their own problems in the second assignment, based on what I’d given the year before, but developing extensions to those problems and then programs to solve them. The more motivated students were thrilled. One called this the most challenging assignment they‘d had. Another student, however, took time to note on the course feedback that I’d made them create their own assignment in this case – an imposition.

Conclusions

For committee members from different engineering domains, I should note that 90% of our CSSE grads become a part of software development groups after graduation – this is what we prepare them to do. And engineering in this domain does differ somewhat from most of engineering. In particular, about half of new development projects still fail in some major way.
 Partly that’s because we’re still new at software engineering. Partly it’s because of the invisibility of software – it’s harder to build models where you can see the weaknesses. And partly it’s because of the portability of software. One only builds new systems with significant novelty. If they are the same, you just download an existing system onto your PC or server. Thus, if there is any engineering domain where dealing with surprise is an equal partner with being scientific and rational, it is software engineering. The right-brain skills are required to survive in our discipline. As in Steve Jobs’ motto: “Stay hungry, stay foolish.”

For Rose students, this Real World of software development is something they must approach while here. Recall that in high school most of the problems they are given in math and science classes still have “book answers.” By the time they graduate from Rose, they should be able to deal with much fuzzier problems, where any problem solving approach they would choose involves approximations and guesses. When our students are dealing with the creation of new software, whether they end up as CSSE majors or another major, the choices are very fuzzy indeed.

If we feel like Friedman that the world is flat and that American engineers will have to move further and further into the creative world in order to survive, then I believe our teaching styles need to evolve to promote that adjustment. I agree with him, and I think methods like Knowles’ Andragogy do more to promote such thinking in our students than do traditional pedagogical techniques. We hear that “creativity cannot be taught,” but that’s a trick answer. The catch is that it can’t be taught pedagogically. The learning comes in students’ abandoning everything they know well, including reliance on the teacher to bail them out. Then they can discover what’s deeper which nobody knew. And they will “own” this discovery.

In making a choice at Rose to move toward developing more right-brain ability in our students, we may have to abandon measures such as whether, on first brush with a teaching style for that, our students like it. Perhaps it is more important, even in beginning and required courses, for students to achieve in an environment requiring greater creativity and more self-reliance?

� Author of The World is Flat: A Brief History of the Twenty-first Century.

� See Mihaly Csikszentmihalyi’s Creativity: Flow and the Psychology of Discovery and Invention, 1996, ISBN 0-06-092820-4.

� E.g., see The Adult Learner, Sixth Edition, by Malcolm Knowles, et al, ISBN 0750678372.

� See Readings in Information Visualization: Using Vision to Think, ed. by Card, McKinley & Shneiderman, ISBN 1558605339.

� “I always start out with this confusion, like I’m some kind of stupid ape who can’t figure out how to put the two sticks together to reach the bananas…” – Richard Feynman, filmed in class at Cal Tech, 1962. (A film I use in my classes here at Rose.)

� Counting both technical failures and also business failures such as large unplanned delays and cost overruns.

Steve Chenoweth
Teaching Philosophy – Jan 9, 2006
1

